Int J Biol Macromol. 2025 Mar 11:141834. doi: 10.1016/j.ijbiomac.2025.141834. Online ahead of print.
ABSTRACT
Intensive inflammation induced via bacterial infection seriously disturb the immune-microenvironment and compromise the neovascularization in the skin wound. On the basis of reducing bacterial infections, alleviating inflammatory response and rebuild the crosstalk between macrophages and vascular endothelial cell (VEC) serve as the key strategy for facilitating infected wound healing. Herein, manganese tetroxide (Mn3O4) nanozymes and polydopamine-coated hydroxyapatite (PHA) nanoparticles were loaded on the gelatin methacryloyl (GelMA) hydrogel, which was subsequently crosslinked by the UV light to construct a multifunctional hydrogel wound dressing GelMA-PHA-Mn3O4 with excellent anti-bacterial, immuno-regulation and angiogenic properties. Triggered by near infrared (NIR), PHA exhibited photothermal effect and effectively eradicated Staphylococcus aureus (S. aureus) and Escherichia coli (E. coli) biofilm. On the other hand, Mn3O4 nanozymes in hydrogel exhibit desirable reactive oxygen species (ROS) scavenging capacity due to the redox cycle between Mn2+ and Mn3+, which successfully transform the LPS-induced macrophage phenotype from pro-inflammation M1 to anti-inflammation M2. Notably, the interaction between macrophages and VECs was subsequently reconstructed and exhibited an evident pro-angiogenic phenomenon along with the improvement of local immuno-microenvironment. In vivo study further verified that the GelMA-PHA-Mn3O4 hydrogel combined with NIR irradiation could accelerate the healing of infected wound through the prominent anti-bacterial and immuno-regulation effect. The collagen deposition and formation of blood vessel in the wound were active. Above, this study demonstrated that the GelMA-PHA-Mn3O4 hydrogel represents a promising approach for managing infected wounds, with an anticipated prospect in clinical application.
PMID:40081722 | DOI:10.1016/j.ijbiomac.2025.141834